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We have demonstrated a nanotechnology strategy to realize the full potential of exchange-spring nanocomposite permanent magnets. By thermally processing
sputtered epitaxial SmCo/Fe exchange-spring bilayer structures to promote interdiffusion at the interface, we improved their resistance against magnetization
reversal, thereby improving their energy product.

MotivationMotivation

•High-performance permanent magnets improve the energy efficiency of
motors and generators by making them lighter;

•The exchange-spring magnets can potentially achieve twice the energy
product of Nd-Fe-B magnets, whose performance is incrementally
approaching the theoretical limit;

•Exchange-spring magnets fabricated using conventional processing
techniques have soft phases too large to achieve effective coupling or
high performance.
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Exchange-spring
nanocomposite magnets
exploit the high
magnetization of the soft
phase and the high
anisotropy of the hard
phase combine to give
rise to high energy
product.

Microstructure of a melt-spun
Nd2Fe14B/α-Fe exchange-
spring magnet.

Early magnetization reversal of the
large soft phase limits the energy
product (BH) of exchange-spring
magnets.
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X-ray reflectivity of Sm-Co(200Å)/Fe(200Å ) bilayer
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Schematic illustration of the
variation of the material
parameters across a graded
interface.

ResultsResults

• Improved resistance against reversal
• Full recoverable magnetization
• Increased energy product
• Reduced interfacial roughness indicates interdiffusion
• Qualitative agreement with numerical modeling

Atomic Force Microscopy image
showing a rough as-deposited
Sm-Co surface

X-ray reflectivity showing
reduced Sm-Co/Fe interfacial
roughness due to annealing

We annealed model exchange-spring
structures (sputtered epitaxial Sm-
Co/Fe bilayers ) to promote
interdiffusion and create a graded
interface.

Magnetization hysteresis loops of a
Sm-Co(20nm)/Fe(10nm) bilayer
before and after annealing at
various temperatures.

Simulated magnetization
hysteresis loops of a Sm-
Co(200A)/Fe(100 Å ) bilayer
assuming various extent of
graded interface.

Sm-Co(20nm)/Fe(10nm)




